

33 Annual CBNA Meeting 11-11-2021

Perspectives on Zn oxide removal from piglet diets

Francesc Molist – R&D Manager SFR

International trends

- Fast expansion of animal production in South East Asia and India.
- Increased volatility of feedstuff prices.
- Increased competition for cereals between food, feed and fuel.
- Increased pressure on water and agricultural soil sources.
- Sustainability (animal welfare, antibiotics,

environment) become global issues.

- Genetic potential of livestock animals increases.
- Increase world population.
- Less publicly available knowledge.
- ZnO replacement before August 2022 in EU.

The problem

Genetic development sow - consequences

> Bigger litters \rightarrow more piglets with a low birth weight (<1100 g)

(SFR / 3113 litters / 2011-2021, unpublished)

Knowhow to feed

Weaning a stressful period

In absence of in-feed antibiotics, higher risk of PW disorders

After weaning the digestive tract is still relatively immature

Microbiota-gut-brain axis examples before weaning

What is important in the PW period?

Epidemiological studies

ADFI of the piglets in the 1st week post-weaning is important.

How we can help the piglets to have a good start?

Is the analytical characterization of dietary fiber a good approach?

Knowhow to feed

Effect of diet composition on diarrhea incidence the first 2 weeks PW

Gives functionality of fibre ingredients a better characterization?

Is fibre an ANF in PW diets?

Viscosity

Slow gastric empty rateIncrease nutrient absorption

Intestinal Viscosity (mPa.s)

Reduce enzymatic digestion
Decrease and stop intestinal transit
Increase risk of bacterial growth in the intestine
Hidrolize bile salts

Viscosity

Effect of digesta viscosity in post-weaning diarrhea

	Days after weaning				
	Day 7	Day 10			
Rice	0/8	1/8	0/8	0/8	
Rice+ low viscous CMC	5/8	3/8	4/8	4/8	
Rice+ high viscous CMC	7/7	7/7	7/7	5/7	
P-value	<0.005	<0.005	<0.005	<0.005	

McDonald et al., (2001)

Increasing the digesta viscosity, especially in the ileum, increases the risk of post-weaning diarrhea

Is the inclusion of inert fibre better than fermentable fibre in PW diets?

NSPS

INERT FIBRE

Improve digestive function Modifies microbiota GIT Enhances microbial fermentation Reduces nutrient digestibility Penalizes animal performance

FERMENTABLE FIBRE

Slows gastric emptying Proximal fermentation in the hindgut Increases luminal viscosity

Between 10 and 15 day post-weaning occurs an increased of the fermentation capacity of the animals associated with the maturation of their intestinal tract

Diet composition	Table 1. Formulation and chemica	Table 1. Formulation and chemical composition of the experimental diets ¹				
Dict composition		1.5454	Experim	ental diet		
		Phas	eI	Phas	e II	
E a sur a statuta	Item	Control I	Fiber I	Control II	Fiber II	
Fermentable	Ingredient, g/kg (as-fed basis)					
	Wheat	225 200	198	350	303	
(x3)	Corn		175	200	172	
	Barley	120	105	150	129	
	Soybean meal (48% CP)	240	230	250	230	
	Dried whey	150	150	-		
	Dehydrated sugar beet pulp	-	60	-	90	
	 Soybean hulls 	320	20	12	30	
	Vegetable oil	25	25	10	10	
	Dicalcium phosphate	10	9.8	11.2	11.5	
	Calcium carbonate	11.3	9	11.2	7.3	
Inort (v1)	L-Lys-HCl	5.6	5.2	4.6	4.2	
	DL-Met	2.7	2.7	1.6	1.6	
	L-Thr	2.5	2.4	1.9	1.9	
	L-Trp	0.8	0.8	0.4	0.4	
	Salt	2	2	4	4	
	Premix ¹	5	5	5	5	
	3-phytase ²	0.1	0.1	0.1	0.1	
	Calculated composition, g/kg DM					
	NE, MJ/kg	10.4	10.0	9.8	9.3	
	Digestible Lys	13.0	12.5	11.6	10.9	
	Digestible P	3.8	3.7	3.2	3.1	
2x2 Experimental design:	Chemical composition, g/kg DM					
	Ash	64.5	64.9	58.8	60.1	
	CP (N × 6.25)	219.1	212.3	220.2	213.0	
• I evel of F-CHO [·] high and low	Ether extract	47.2	46.0	31.6	32.2	
	Starch	381.5	341.5	488.8	425.9	
	GE, MJ/kg	18.77	18.65	18.55	18.41	
• Sanitary conditions: good and had	Crude fiber	32.5	48.9	35.8	63.9	
· January conuntions. your and bad	NDF	109.6	112.5	122.3	153.2	
-	ADF	34.6	50.1	39.3	69.0	
	ADL	2.1	8.6	3.9	9.9	
	Total dietary fiber	120.9	169.1	145.8	216.8	
	Water insoluble fiber	102.6	140.7	122.7	186.1	

Interaction between F-CHO and health status of the animals

Montagne et al., 2012

In situations with bad sanitary conditions, the utilization of F-CHO sources in the first week post-weaning is an additional risk factor

FERMENTATION KINETICS Piglets need a fully developed GIT to ferment fibre ingredients

Physical effect

Effect of diet dilution in the first 2 weeks PW on the piglet performance

	PC	NC	I-CHO	SEM	P-value
ADG, g	99.1 ^{ab}	114.5 ^b	131.3ª	4.66	0.008
ADFI, g	146.8 ^b	149.0 ^b	173.3ª	4.23	0.001
FS	5.2 ^b	5.3 ^b	5.5 ^a	0.06	0.005
G:F	0.68	0.77	0.76	0.04	0.103

Gerritsen et al., 2012

Diet dilution with inert fiber sources improves the ADFI, ADG and FS of the piglets compared to the NC and PC diets

Effect of diet dilution in the first 2 weeks PW on the piglet performance

PC	NC	I-CHO	SEM	P-value
5.6 ^b	4.8 ^{ab}	3.8ª	4.66	0.008
6.8 ^b	5.6 ^b	3.9 ^a	4.66	0.008
0.030 ^{AB}	0.028 ^B	0.032 ^A	0.001	0.060
0.78 ^b	0.76 ^b	0.89 ^a	0.04	0.103
	PC 5.6 ^b 6.8 ^b 0.030 ^{AB} 0.78 ^b	PC NC 5.6 ^b 4.8 ^{ab} 6.8 ^b 5.6 ^b 0.030 ^{AB} 0.028 ^B 0.78 ^b 0.76 ^b	PC NC I-CHO 5.6 ^b 4.8 ^{ab} 3.8 ^a 6.8 ^b 5.6 ^b 3.9 ^a 0.030 ^{AB} 0.028 ^B 0.032 ^A 0.78 ^b 0.76 ^b 0.89 ^a	PC NC I-CHO SEM 5.6 ^b 4.8 ^{ab} 3.8 ^a 4.66 6.8 ^b 5.6 ^b 3.9 ^a 4.66 0.030 ^{AB} 0.028 ^B 0.032 ^A 0.001 0.78 ^b 0.76 ^b 0.89 ^a 0.04

Gerritsen et al., 2012

Dilution of the diet with iNSP results in a lower E. coli counts, higher activity of brush border enzymes and higher stomach weight, suggesting a better adaptation of the piglets to the PW diet

Physical effect

E.coli attached to ileum the mucosa

WB inclusion reduces the *E. coli* bacteria in the ileum digesta, and in coarse particle size also reduces the number of *E. coli* K88 adhered to the ileum mucosa

The complicated world of the fibre ingredients

DEGENERATIVE PHASE (5-10 d PW)

Protein

- Protein and AA necessary for piglet growth.
- Protein & minerals have a higher buffering capacity!.
- High protein level can negatively affect intestinal health.
- Protein rich diets: large amount of indigestible protein, enters the large intestine, fermentation.
- Amount of protein in the large intestine is influenced by:
 - Protein content of the diet
 - Digestibility of the protein
 - AA profile
 - Protein balance of the animal
 - Activity of the intestinal wall (endogenous protein production)

Protein source and age of piglet

	Age of the piglets (wks)			
	3.5	4.5	5.5	
Milkpowder	93	94	95	
Soycomil	85	87	88	
SBM	78	84	86	
Fishmeal	86	89	91	
Potato protein	87	-	91	

(SFR trial)

The older the animal > the higher the protein digestibility Digestibility vegetal protein sources is lower specially in case of ANF

Effect of protein source on performance

	Corn-soybean	15% Milk powder	8% Spray dried plasma
Day 1-7			
ADG	85	134**	140**
ADFI	133	170	163
FCR	1.55	1.26	1.15
Day 7-14			
ADG	243	274	244
ADFI	326	311	330
FCR	1.34	1.14	1.35
Day 14-28			
ADG	496	535*	549*
ADFI	805	894*	854*
FCR	1.62	1.67	1.56
			* : P < 0.05
			Araujo et al., 2010 ** : P > 0.01

Knowhow to feed

NRC (1998)

source	Baker1966, Baker& Allee (1970), Fuller et al (1989). maintenance	Fuller et al., 1989Pettigrew, 1993Fullerprotein accretionmilk synthesisb		Pettigrew, 1993 body tissue	Dietary AA profile Boisen 1997 25-120 kg pigs
lys	100	100	100	100	100
met	28	27	26	27	26
met+cys	123	55	45	45	51
thr	151	60	58	58	64
trp	26	18	18	10	17
iso	75	54	55	50	57
leu	70	102	115	109	114
his	32	32	40	45	36
phe	50	60	55	60	57
phe+try	121	93	112	103	114
val	67	68	85	69	74

Protein sources

% CP	Feedstuff
60-80%	potato protein, (blood), fishmeal, AA
40-60%	(animal meal), soybean meal, maize gluten, milk
	proteins
20-40%	peas, lupins, beans, sunflower meal, rapeseed meal, coconut meal
10-20%	grains, palm kernel, maizegluten feed
0-10%	pulp, tapioca, molasses, fats

Fiber & CP fermentation

Fibre & CP fermentation

Protein Fermentation can be reduced:

How we can help the piglets to have a good start?

- The chemical and physical properties and therefore the nutritional value, differ widely between different fat sources.

- Fatty acids are major components of cell membranes, metabolic subtrates, cell-signiling molecules and play a critical role as immune modulators.

- Important to control the balance between optimal digestibility and product quality.

- When piglets face diarrhea long-chain fatty acids digestibility is drastically reduced.

Bacteria (log CFU/g chyme)

Van der Klis, 1999

Over bacterial growth is linked to lower fat digestibility

MCFA's- Intestinal health

Treatment	Stomach				Duodenum			
	Total	Lactobacilli	Streptococci	E. coli	Total	Lactobacilli	Streptococci	E. coli
A B C D	7.0 ^a 7.0 ^{ac} 5.9 ^b 6.9 ^{ac}	7.2 ^{ac} 7.6 ^a 6.6 ^{bc} 7.3 ^a	4.2 ^a 0.6 ^b 5.3 ^a 5.1 ^a	4.6 ^a 0.8 ^{bc} 2.0 ^b 0.0 ^c	6.4° 6.1° 5.6° 5.9°	6.9 6.8 5.9 6.4	1.6 ^a 0.0 ^a 4.7 ^b 4.7 ^b	4.9 ^a 4.8 ^a 1.8 ^b 1.8 ^b
S.E.M.	0.13	0.13	0.48	0.48	0.13	0.19	0.54	0.51

a,b,c: different superscripts in the same column denote significant differences at least P < 0.05.

Dierick et al., 2002

- A: control feed (incl. 2.5% soya oil)
- B: control feed + 2.5% MCFA C8 and C10 (i.p.v. soya oil)
- C: feed B + lipase
- D: Control feed met 1.5% organic acids

Take home message...

Muito Obrigado!!

Francesc Molist, DVM, PhD (fmolist@Schothorst.nl)

Schothorst Feed Research BV International, independent research institute on animal nutrition, connecting knowhow with farm practice 41 Knowhow to feed

Thank you for your attention

fmolist@schothorst.nl